Bioactivation of diclofenac via benzoquinone imine intermediates-identification of urinary mercapturic acid derivatives in rats and humans.

نویسندگان

  • G K Poon
  • Q Chen
  • Y Teffera
  • J S Ngui
  • P R Griffin
  • M P Braun
  • G A Doss
  • C Freeden
  • R A Stearns
  • D C Evans
  • T A Baillie
  • W Tang
چکیده

The metabolism of diclofenac has been reported to produce reactive benzoquinone imine intermediates. We describe the identification of mercapturic acid derivatives of diclofenac in rats and humans. Three male Sprague-Dawley rats were administered diclofenac in aqueous solution (pH 7) at 50 mg/kg by intraperitoneal injection, and urine was collected for 24 h. Human urine specimens were obtained, and samples were pooled from 50 individuals. Urine samples were analyzed by liquid chromatography-tandem mass spectrometry (LC/MS/MS). Two metabolites with MH(+) ions at m/z 473 were detected in rat urine and identified tentatively as N-acetylcysteine conjugates of monohydroxydiclofenac. Based upon collision-induced fragmentation of the MH(+) ions, accurate mass measurements of product ions, and comparison of LC/MS/MS properties of the metabolites with those of synthetic reference compounds, one metabolite was assigned as 5-hydroxy-4-(N-acetylcystein-S-yl)diclofenac and the other as 4'-hydroxy-3'-(N-acetylcystein-S-yl)diclofenac. The former conjugate also was detected in the pooled human urine sample by multiple reaction-monitoring LC/MS/MS analysis. It is likely that these mercapturic acid derivatives represent degradation products of the corresponding glutathione adducts derived from diclofenac-2,5-quinone imine and 1',4'-quinone imine, respectively. Our data are consistent with previous findings, which suggest that oxidative bioactivation of diclofenac in humans proceeds via benzoquinone imine intermediates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of dasatinib and its structural analogs as CYP3A4 mechanism-based inactivators and the proposed bioactivation pathways.

Dasatinib was approved in 2006 for the treatment of imatinib-resistant chronic myelogenous leukemia and functions primarily through the inhibition of BCR-ABL and Src kinase. Dasatinib is extensively metabolized in humans by CYP3A4. In this study, we report that the bioactivation of dasatinib by CYP3A4 proceeds through a reactive intermediate that leads to CYP3A4 inactivation with K(I) = 6.3 mic...

متن کامل

Delineating novel metabolic pathways of DPC 963, a non-nucleoside reverse transcriptase inhibitor, in rats. Characterization of glutathione conjugates of postulated oxirene and benzoquinone imine intermediates by LC/MS and LC/NMR.

The metabolic activation of (S)-5,6-difluoro-4-cyclopropylethynyl-4-trifluoromethyl-3,4-dihydro-2(1H)-quinazolinone, DPC 963, in rats was investigated by identifying and characterizing the GSH and mercapturic acid conjugates excreted in the bile and urine, respectively. The structures of these adducts, which were unequivocally elucidated by LC/MS/MS and NMR experiments, revealed the existence o...

متن کامل

Studies on cytochrome P-450-mediated bioactivation of diclofenac in rats and in human hepatocytes: identification of glutathione conjugated metabolites.

The nonsteroidal anti-inflammatory drug diclofenac causes a rare but potentially fatal hepatotoxicity that may be associated with the formation of reactive metabolites. In this study, three glutathione (GSH) adducts, namely 5-hydroxy-4-(glutathion-S-yl)diclofenac (M1), 4'-hydroxy-3'-(glutathion-S-yl)diclofenac (M2), and 5-hydroxy-6-(glutathion-S-yl)diclofenac (M3), were identified by liquid chr...

متن کامل

Differences in urinary monochlorobenzene metabolites between rats and humans.

The high performance liquid chromatographic method for the determination of p-chlorobenzene mercapturic acid and 4-chlorocatechol conjugates is described. For determination of urinary mercapturic acid, the benzene extract from urine was injected into a liquid chromatograph and for determination of urinary 4-chlorocatechol conjugates, hydrolysate was dissolved in methanol. The methanol solution ...

متن کامل

Short Communication A Novel Bioactivation Pathway for 2-[2-(2,6-Dichlorophenyl) aminophenyl]ethanoic Acid (Diclofenac) Initiated by Cytochrome P450-Mediated Oxidative Decarboxylation

Diclofenac (2-[2-(2,6-dichlorophenyl)aminophenyl]ethanoic acid), a nonsteroidal antiinflammatory drug, undergoes bioactivation by cytochrome P450 oxidation to chemically reactive metabolites that are capable of reacting with endogenous nucleophiles such as glutathione (GSH) and proteins and that may play a role in the idiosyncratic hepatotoxicity associated with the drug. Here, we investigated ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Drug metabolism and disposition: the biological fate of chemicals

دوره 29 12  شماره 

صفحات  -

تاریخ انتشار 2001